
“Visual Studio .NET enables quick, drag-and-drop construction of
form-based applications…”

• Event-driven, code-behind programming
• Visual Studio .NET
• WinForms

• Controls

Part 1

• Event-driven, code-behind programming…

Event-driven applications

• Idea is very simple:
– individual user actions are translated into “events”
– events are passed, 1 by 1, to application for processing

– this is how most GUIs are programmed…

GUI App

GUI-based events

• Mouse move

• Mouse click

• Mouse double-click

• Key press

• Button click

• Menu selection
• Change in focus
• Window activation

• etc.

Code-behind

• Events are handled by methods that live behind visual interface

– known as "code-behind"

– our job is to program these methods…

Call-backs

• Events are a call from object back to us…

• How is connection made?

– setup by code auto-generated by Visual Studio

Part 2

• Visual Studio .NET…

Visual Studio .NET (VS.NET)

• A single IDE for all forms of .NET development

– from class libraries to form-based apps to web services

– and using C#, VB, C++, J#, etc.

Basic operation

• Visual Studio operates in one of 3 modes:

1) design

2) run

3) break

• When in doubt, check the title bar of VS…

design run

break

Example: a windowing application

• GUI apps are based on the notion of forms and controls…

– a form represents a window

– a form contains 0 or more controls

– a control interacts with the user

• Let's create a GUI app in a series of steps…

Step 1

• Create a new project of type “Windows Application”

– a form will be created for you automatically…

Step 2 — GUI design

• Select desired controls from toolbox…

– hover mouse over toolbox to reveal

– drag-and-drop onto form

– position and resize control

GUI design cont’d…

• A simple calculator:

• Position and configure controls

– click to select

– set properties via Properties window

Step 3 — code design

• “Code behind” the form…

• Double-click the control you want to program

– reveals coding window

Step 4 — run mode

• Run!

Break mode?

• Easily triggered in this application via invalid input…

Working with Visual Studio

• In Visual Studio, you work in terms
of source files, projects & solutions

• Source files contain code

– end in .cs, .vb, etc.

• Project files represent 1 assembly
– used by VS to keep track of source files
– all source files must be in the same language

– end in .csproj, .vbproj, etc.

• Solution (*.sln) files keep track of projects

– so you can work on multiple projects

Part 3

• WinForms…

WinForms

• Another name for traditional, Windows-like
GUI applications

– vs. WebForms, which are web-based

• Implemented using FCL

– hence portable to any .NET platform

Abstraction

• FCL acts as a layer of abstraction

– separates WinForm app from underlying platform

System.Windows.Forms.Form

CLR

Windows OS

instance of

FCL class
object

Form properties

• Form properties typically control visual appearance:

– AutoScroll
– BackgroundImage
– ControlBox
– FormBorderStyle (sizable?)
– Icon
– Location
– Size
– StartPosition
– Text (i.e. window's caption)
– WindowState (minimized, maximized, normal)

Form1 form;
form = new Form1();
form.WindowState = FormWindowState.Maximized;
form.Show();

Form methods

• Actions you can perform on a form:

– Activate: give this form the focus

– Close: close & release associated resources

– Hide: hide, but retain resources to show
form later

– Refresh: redraw
– Show: make form visible on the screen, &

activate
– ShowDialog: show modally

form.Hide();
 .
 .
 .

form.Show();

Form events

• Events you can respond to:

– bring up properties window

– double-click on event name

– Load: occurs just before form is shown for first time
– Closing: occurs as form is being closed (ability to

cancel)

– Closed: occurs as form is definitely being closed

– Resize: occurs after user resizes form
– Click: occurs when user clicks on form's background

– KeyPress: occurs when form has focus & user presses
key

Example

• Ask user before closing form:

private void Form1_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 DialogResult r;

 r = MessageBox.Show("Do you really want to close?",
 "MyApp",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question,
 MessageBoxDefaultButton.Button1);
 if (r == DialogResult.No)
 e.Cancel = true;
}

Part 4

• Controls…

Controls

• User-interface objects on the form:

– labels

– buttons

– text boxes

– menus
– list & combo boxes
– option buttons

– check boxes

– etc.

Abstraction

• Like forms, controls are based on classes in the FCL:

– System.Windows.Forms.Label

– System.Windows.Forms.TextBox

– System.Windows.Forms.Button

– etc.

• Controls are instances of
these classes

object

object

object

object

object

object

Who creates all these objects?

• Who is responsible for creating control instances?

– code is auto-generated by Visual Studio

– when form object is created, controls are then created…

Naming conventions

• Set control's name via Name property

• A common naming scheme is based on prefixes:

– cmdOK refers to a command button control

– lstNames refers to a list box control
– txtFirstName refers to a text box control

Labels

• For static display of text

– used to label other things on the form

– used to display read-only results

• Interesting properties:

– Text: what user sees
– Font: how he/she sees it

Command buttons

• For the user to click & perform a task

• Interesting properties:

– Text: what user sees

– Font: how he/she sees it

– Enabled: can it be clicked
• Interesting events:

– Click: occurs when button is "pressed"

private void cmdAdd_Click(...)
{
 int i, j, k;
 i = System.Convert.ToInt32(this.txtNum1.Text);
 j = System.Convert.ToInt32(this.txtNum2.Text);
 k = i + j;
 MessageBox.Show("Sum = " + k.ToString());
}

Text boxes

• Most commonly used control!

– for displaying text

– for data entry

• Lots of interesting features…

Text box properties

• Basic properties:

– Text: denotes the entire contents of text box (a string)

– Modified: has text been modified by user? (True / False)

– ReadOnly: set if you want user to view text, but not modify

• Do you want multi-line text boxes?
– MultiLine: True allows multiple lines of text

– Lines: array of strings, one for each line in text box

– ScrollBars: none, horizontal, vertical, or both

Text box events

• Interesting events:

– Enter, Leave: occurs on change in focus

– KeyPress: occurs on ascii keypress

– KeyDown, KeyUp: occurs on any key combination

– TextChanged: occurs whenever text is modified

– Validating and Validated
• Validating gives you a chance to cancel on invalid input

Customer[] customers;
 .
 . // create & fill array with objects...
 .

// display customers in list box
foreach (Customer c in customers)
 this.listBox1.Items.Add(c);

List Boxes

• Great for displaying / maintaining list of data

– list of strings

– list of objects (list box calls ToString() to display)

// display name of selected customer (if any)
Customer c;
c = (Customer) this.listBox1.SelectedItem;
if (c == null)
 return;
else
 MessageBox.Show(c.Name);

And much more…MSDN tutorials online

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

